python怎么✆求交集

python怎么求交集

Python可以使用set类型的交集运算符“&”来求两个集合的交集。首先将两个集合分别转换为set类型,然后使用“&”运算符求交集,最后将结果转换为列表类型即可。
例如,求两个列表的交集可以使用以下代码:
“`
list1 = [1, 2, 3, 4, 5]
list2 = [3, 4, 5, 6, 7]
set1 = set(list1)
set2 = set(list2)
intersection = list(set1 & set2)
print(intersection)
“`
输出结果为:[3, 4, 5]。
注意,只有可哈希的对象才能被添加到set中,因此列表等不可哈希的对象需要先转换为元组类型才能被添加到set中。python怎么✆求交集

大数据采集平台有哪些

针对这个问题,我们先来了解下大数据采集平台提供的服务平台流程包括:

1,首先平台针对需求对数据进行采集。

2,平台对采集的数据进行存储。

3,再对数据进行分析处理。

4,最后对数据进行可视化展现,有报表,还有监控数据。

优秀的大数据平台要能在大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘方面都能表现出优秀的性能。

现在来推荐几个主流且优秀的大数据平台:

1,Apache Flume

Apache旗下的一款开源、高可靠、高扩展、容易管理、支持客户扩展的数据采集系统,它是一个分布式、可靠、可用的系统,是java运行时环境j用于从大量不同的源有效地收集、聚合、移动大量日志数据进行集中式数据存储。

主要的功能表现在:

1.日志收集:日志系统中定制各类数据发送方,用于收集数据。

2.数据处理:提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力,提供了从console(控制台)、RPC(Thrift-RPC)、text(文件)、tail(UNIX tail)、syslog(syslog日志系统,支持TCP和UDP等2种模式),exec(命令执行)等数据源上收集数据的能力。

2,Fluentd

Fluentd是一个用于统一日志层的开源数据收集器。Fluentd允许您统一数据▧收集和使用,以便更好地使用和理解数据。Fluentd是云端原生计算基☻金会(CNCF)的成员项目之一,遵循Apache 2 License协议 。FLuentd的扩展性非常好,客户可以自己定制(Ruby)Input/Buffer/Output。

官网:

主要的功能表现在:

1,Input:负责接收数据或者主动抓取数据。支持syslog,http,file tail等。

2,Buffer:负责数据获取的性能和可靠性,也有文件或内存等不同类型的Buffer可以配置。

3,Output:负责输出数据到目的地例如文件,AWS S3或者其它的Fluentd。

3,Chukwa

Chukwa可以将各种各样类型的数据收集成适合 Hadoop 处理的文件保存在 HDFS 中供 Hadoop 进行各种 MapReduce 操作。Chukwa 本身也提供了很多内置的功能,帮助我们进行数据的收集和整理。

官网:

1, 对应用的各个节点实时监控日志文件的变化,并将增量文件内容写入 HDFS,同时还可以将数据去除重复,排序等。

2,监控来自 Socket 的数据,定时执行我们指定的命令获取输出数据。

优秀的平台还有很多,笔记浅谈为止,开发者根据官方提供的文档进行解读,才能深入了解,并可根据项目的特征与需求来为之选择所需的平台。

大数据开发、大数据分析、大数据运维主要工

您好我是 数据僧。

首先,工作本身没有好坏之分,只有门槛高低之别。大数据开发、大数据分析、大数据运维都围绕着大数据展开。如果我们把大数据去掉,就只剩下,开发,分析,运维。当然还有其它的工作,例如运营,产品,讲师,测试等。 加上了大数据,只是我们的工作内容,或者说是工作发生了变化。

大数据是传统行业,传统技术逐步发展的产物☣。但是并没有打破我们在传统行业的工作模式,和我们的一些基础知识的储备。革新的只有处理技术,工作手段。在这里我们更详细的说说大数据开发、大数据分析、大数据运维 的工作内容,已经门槛,不做好坏评价。

非大数据 开发,分析,运维干什么呢?

开发日常工作是干什么了 ? 围绕着产品经理,进行产品开发,升级,迭代。加班熬夜,赶进度。每日的工作就是编码,和产品沟通或者撕X,和测试沟通或者斯X,最终确保产品上线,保证产品正常使用,以及后续迭代升级。

分析日常工作是什么了?数据整理,制作报表,最后就是报告,会议,阐述结论,最后就是说服对方接受观点,的确很多时候,分析出来的结论,对方无法接受。

运维日常工作是什么了?最核心的就是监控,机器是否正常运转,资源是否够用,产品应用是否都正常,开发相关的工具,保证异常能够及时发现。

在介绍大数据相关的工作前我们先了解下大数据的处理流程

我们在看看hadoop的大数据生态圈。当然大数据生态圈不是在只有hadoop。

大数据开发的主要工作

开发数据收集工具,数据清洗和整理,开发数据应用;当然这些不是一个人去完成,都会落在各个团队中去完成。

完整这些工作需要哪些技能?从这些技能我们也能看出来大数据开发的主要工作,就是这些工具打交道。一门开发语言(java/python/c#/scala 等),大数据下的一些框架:MapReduce,Spark,Hdfs,Storm,Hbase,Zookeeper 等,只会其中的2到三项基本找份工作没有问题,如何进阶在这不详细讨论。我们来看图吧。

大数据分析的主要工作

有大表哥,专门做各种报表。取数机器人,提取各种数据。当然也有做数据分类,特征提取等数据挖掘,机器学习等高等玩家。

这里一并概括了,大数据分析的主要工作是:基于现有的数据进行数据分析得出一个结论,最后进行商业决策。当然现实不是这样的。大多数人成了大表哥,取数机器人,高端玩家也不列外,挖出来的东西,在没有找到落地场景前,都是一坨一坨的。这里都只是调侃。

大数据分析需要哪些技能呢?我们不管具体的工作内容,看看我们每天要面对那些工具,工具是我们每天要接触的东西。 Excel,SPSS,SQL,数据库,R,Python 等。当然我们不用都会。

我们还是看图吧,看看数据分析师的能力体系:

在看看每个阶段需要的技能,分析师和开发的区别在于,核心在于处理数据和清洗数据,达到自己可用的状态。开发是收集数据和整理数据,让数据变得统一。

大数据运维的工作

对大数据集群进行监控和维护升级,保障集群正常运行,从而保证 数据收集服务能正常运行,保证集群资源够用,监控集群资源消耗情况。

他们是职业背锅侠,也是一群默默无闻的伙伴。无论开发,还是分析,还是其它的岗位,都有在人前显摆的时候,我们的运维永远只能在人后做好保障。

我们来看看运维的能力体系吧:

以上是我对这个问题的理解,有些调侃,但都想表达和传递一种正能量,每个行业,每个岗位都有其特定的属性和特点,既然选择了,就只顾风雨兼程,管它花开花落,最终中能到达理想的彼岸。

关注数据僧,我们一起讨论,大家都喜欢什么样的工作,欢迎大家留言。(图片来自网络,侵删。)

memcache和redis和mongo

不同的Nosql,其实应用的场景各有不同,所以我们应该先了解不同Nosql之间的差别,然后分析什么才是最适合我使用的Nosql。

Nosql介绍

Nosql的全称是Not Only Sql,这个概念早起就有人提出,在09年的时候比较火。Nosql指的是非关系型数据库,而我们常用的都是关系型数据库。就像我们常用的mysql,sqlserver一样,这些数据库一般用来存储重要信息,应对普通的业务是没有问题的。但是,随着互联网的高速发展,传统的关系型数据库在应付超大规模,超大流量以及高并发的时候力不从心。而就在这个时候,Nosql得到的告诉的发展。

Nosql和关系型数据库的区别

1.存储

关系型数据库是表格式的,因此存储在表的行和列中。他们之间很容易关联协作存储,提取数据很方便。而Nosql数据库则与其相反,他是大块的组合在一起。通常存储在数据集中,就像文档、键值对或者图结构。

2.存储结构

关系型数据库对应的是结构化数据,数据表都预先定义了结构(列的定义),结构描述了数据的形式和内容。这一点对数据建模至关重要,虽然预定义结构带来了可靠性和稳定性,但是修改这些数据比较困难。而Nosql数据库基于动态结构,使用与非结构化数据。因为Nosql数据库是动态结构,可以很容易适应数据类型和结构的变化。

3.存储规范

关系型数据库的数据存储为了更高的规范性,把数据分割为最小的关系表以避免重复,获得精简的空间利用。虽然管理起来很清晰,但是单个操作设计到多张表的时候,数据管理就显得有点麻烦。而Nosql数据存储在平面数据集中,数据经常可能会重复。单个数据库很少被分隔开,而是存储成了一个整体,这样整块数据更加便于读写

4.存储扩展

这可能是两者之间最大的区别,关系型数据库是纵向扩展,也就是说想要提高处理能力,要使用速度更快的计算机。因为数据存储在关系表中,操作的性能瓶颈可能涉及到多个表,需要通过提升计算机性能来克服。虽然有很大的扩展空间,但是最终会达到纵向扩展的上限。而Nosql数据库是横向扩展的,它的存储天然就是分布式的,可以通过给资源池添加更多的普通数据库服务器来分担负载。

5.查询

关系型数据库通过结构化查询语言来操作数据库(就是我们通常说的SQL)。SQL支持数据库CURD操作的功能非常强大,是业界的标准用法。而Nosql查询以块为单元操作数据,使用的是非结构化查询语言(UnQl),它是没有标准的。关系型数据库表中主键的概念对应Nosql中存储文档的ID。关系型数据库使用预定义优化(比如索引)来加快查询操作,而Nosql更简单更精确的数据访问模式。

6.事务

关系型数据库遵循ACID规则(原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)),而Nosql数据库遵循BASE原则(基本可用(Basically Availble)、软/柔性事务(Soft-state )、最终一致性(Eventual Consistency))。由于关系型数据库的数据强一致性,所以对事务的支持很好。关系型数据库支持对事务原子性细粒度控制,并且易于回滚事务。而Nosql数据库是在CAP(一致性、可用性、分区容忍度)中任选两项,因为基于节点的分布式系统中,很难全部满足,所以对事务的支持不是很好,虽然也可以使用事务,但是并不是Nosql的闪光点。

7.性能

关系型数据库为了维护数据的一致性付出了巨大的代价,读写性能比较差。在面对高并发读写性能非常差,面对海量数据的时候效率非常低。而Nosql存储的格式都是key-value类型的,并且存储在内存中,非常容易存储,而且对于数据的 一致性是 弱要求。Nosql无需sql的解析,提高了读写性能。

8.授权

关系型数据库通常有SQL Server,Mysql,Oracle。主流的Nosql数据库有redis,memcache,MongoDb。大多数的关系型数据库都是付费的并且价格昂贵,成本较大,而Nosql数据库通常都是开源的。

Redis,Memcache,MongoDb的特点与区别

Redis

优点

  1. 支持多种数据结构,如 string(字符串)、 list(双向链表)、dict(hash表)、set(集合)、zset(排序set)、hyperloglog(基数估算)

  2. 支持持久化操作,可以进行aof及rdb数据持久化到磁盘,从而进行数据备份或数据恢复等操作,较好的防止数据丢失  的手段。

  3. 支持通过Replication进行数据复制,通过master-slave机制,可以实时进行数据的同步复制,支持多级复制和增量复制,master-slave机制是Redis进行HA的重要手段。

  4. 单线程请求,所有命令串行执行,并发情况下不需要考虑数据一致性问题。

  5. 支持pub/sub消息订阅机制,可以用来进行消息订阅与通知。

  6. 支持简单的事务需求,但业界使用场景很少,并不成熟。

缺点

  1. Redis只能使用单线程,性能受限于CPU性能,故单实例CPU最高才可能达到5-6wQPS每秒(取决于数据结构,数据大小以及服务器硬件性能,日常环境中QPS高峰大◙约在1-2w左右)。

  2. 支持简单的事务需求,但业界使用场景很少,并不成熟,既是优点也是缺点。

  3. Redis在string类型上会消耗较多内存,可以使用dict(hash表)压缩存储以降低内存耗用。

Memcache

优点

  1. Memcached可以利用多核优势,单实例吞吐量极高,可以达到几十万QPS(取决于key、value的字节大小以及服务器硬件性能,日常环境中QPS高峰大约在4-6w左右)。适用于最大程度扛量。

  2. 支持直接配置为session handle。

缺点

  1. 只支持简单的key/value数据结构,不像Redis可以支持丰富的数据类型。

  2. 无法进行持久化,数据不能备份,只能用于缓存使用,且重启后数据全部丢失。

  3. 无法进行数据同步,不能将MC中的数据迁移到其他MC实例中。

  4. Memcached内存分配采用Slab Allocation机制管理内存,value大小分布差异较大时会造成内存利用率降低,并引发低利用率时依然出现踢出等问题。需要用户注重value设计。

MongoDB

优点

  1. 更高的写负载,MongoDB拥有更高的插入速度。

  2. 处理很大的规模的单表,当数据表太大的时候可以很容易的分割表。

  3. 高可用性,设置M-S不仅方便而且很快,MongoDB还可以快速、安全及自动化的实现节点(数据中心)故障转移。

  4. 快速的查询,MongoDB支持二维空间索引,比如管道,因此可以快速及精确的从指定位置获取数据。MongoDB在启动后会将数据库中的数据以文件映射的加载到内存中。如果内存资源相当丰富的话,这将极大地提高数据库的查询速度。

  5. 非结构化数据的爆发增长,增加列在有些情况下可能锁定整个数据库,或者增加负载从而导致性能下降,由于MongoDB的弱数据结构模式,添加1个新字段不会对旧表格有任何影响,整个过程会非常快速。

缺点

  1. 不支持事务。

  2. MongoDB占用空间过大 。

  3. MongoDB没有成熟的维护工具。

Redis、Memcache和MongoDB的区别

1. 性能

三者的性能都比较高,总的来讲:Memcache和Redis差不多,要高于MongoDB。

2. 便利性

memcache数据结构单一。

redis丰富一些,数据操作方面,redis更好一些,较少的网络IO次数。

mongodb支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富。

3. 存储空间

redis在2.0版本后增加了自己的VM特性,突破物理内存的限制;可以对key value设置过期时间(类似memcache)。

memcache可以修改最大可用内存,采用LRU算法。

mongoDB适合大数据量的存储,依赖操作系统VM做♖内存管理,吃内存也比较厉害,服务不要和别的服务在一起。

4. 可用性

redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整个快照,无增量复制,因性能和效率问题,所以单点问题比较复杂;不支持自动sharding,需要依赖程序设定一致hash 机制。一种替代方案是,不用redis本身的复制机制,采用自己做主动复制(多份存储),或者改成增量复制的(需要自己实现),一致性问题和性能的权衡。

Memcache本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的hash或者环状的算法,解决单点故障引起的抖动问题。

mongoDB支持master-slave,replicaset(内部采用paxos选举算法,自动故障恢复),auto sharding机制,对客户端屏蔽了故障转移和切分机制。

5. 可靠性

redis支持(快照、AOF):依赖快照进行持久化,aof增强了可靠性的同时,对性能有所影响。

memcache不支持,通常用在做缓存,提升性能。

MongoDB从1.8版本开始采用binlog支持持久化的可靠性。

6. 一致性

Memcache 在并发场景下,用cas保证一致性。

redis事务支持比较弱,只能保证事务中的每个操作连续执行。

mongoDB不支持事务。

7. 数据分析

mongoDB内置了数据分析的功能(mapreduce),其他两者不支持。

8. 应用场景

redis:数据量较小的更性能操作和运算上。

memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写少,对于数据量比较大,可以采用sharding)。

MongoDB:主要解决海量数据的访问效率问题。

怎样才可以学好大数据

大数据包括的技术体系、知识体系都非常多,如果是初学者,我们应该从一些基础知识入手:1、数学基础知识。要做数据分析,必须要先了解数理统计的公式、方法、各种数据分布的统计模型算法、矩阵相关的数学知识等内容。

2、Java语言(或Python),而Python语言更偏向机器学习、人工智能深度学习等,相比较而言Java更适合大数据方面。

3、思路清晰思维敏捷,有较好的数学功底。

有了这些基础,再系统学习Hadoop、Linux、Hive、Hbase、数据处理等相关课程,就可以成为大数据领域人才。

python怎么✆求交集

原创文章,作者:Ame,如若转载,请注明出处:https://www.lbseo.cn/13115.html